
Computer Science

e
Mellon

DISTRIBUTION STATEMENT i
Approved for Public Release

Distribution Unlimited

Optimizing Symbolic Model Checking for
Constraint-Rich Models

Bwolen Yang Reid Simmons Randal E. Bryant
David R. O'Hallaron

March 1999
CMU-CS-99-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A condensed version of this technical report will appear in Proceedings of
the International Conference on Computer-Aided Verification, Trento, Italy

(July 1999).

Effort sponsored in part by the Advanced Research Projects Agency and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement number F30602-96-1-0287, in part by the
National Science Foundation under Grant CMS-9318163, and in part by grants from the Intel Cor-
poration and NASA Ames Research Center. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the author and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied, of the Advanced
Research Projects Agency, Rome Laboratory, or the U.S. Government.

WW52J 020
DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

Keywords: symbolic model checking, Binary Decision Diagram (BDD), time-
invariant constraints, redundant state-variable elimination, macro.

CMU-CS-99-118
Computer Science Department
School of Computer Science, Carnegie Mellon University

CMU-CS-99-118

Optimizing Symbolic Model Checking for Constraint-Rich
Models

Bwolen Yang, Reid Simmons, Randal E. Braynt, David R. O'Hallaron

March 1999

A condensed version of this technical report will appear in
Proceedings of the International Conference on Computer-Aided

Verification , Trento, Italy, July 1999.

CMU-CS-99-118.ps
CMU-CS-99-118.pdf

Keywords: Symbolic model checking, Binary Decision Diagram (BDD),
time-invariant constraints, redundant state-variable elimination, macro

This paper presents optimizations for verifying systems with complex
time-invariant constraints. These constraints arise naturally from
modeling physical systems, e.g., in establishing the relationship between
different components in a system. To verify constraint-rich systems, we
propose two new optimizations. The first optimization is a simple, yet
powerful, extension of the conjunctive-partitioning algorithm. The second
is a collection of BDD-based macro-extraction and macro-expansion
algorithms to remove state variables. We show that these two
optimizations are essential in verifying constraint-rich problems; in
particular, this work has enabled the verification of fault diagnosis
models of the Nomad robot (an Antarctic meteorite explorer) and of the
NASA Deep Space One spacecraft.

25 pages

Abstract

This paper presents optimizations for verifying systems with complex time-
invariant constraints. These constraints arise naturally from modeling physical
systems, e.g., in establishing the relationship between different components in a
system. To verify constraint-rich systems, we propose two new optimizations.
The first optimization is a simple, yet powerful, extension of the conjunctive-
partitioning algorithm. The second is a collection of BDD-based macro-extraction
and macro-expansion algorithms to remove state variables. We show that these two
optimizations are essential in verifying constraint-rich problems; in particular, this
work has enabled the verification of fault diagnosis models of the Nomad robot (an
Antarctic meteorite explorer) and of the NASA Deep Space One spacecraft.

1 Introduction
This paper presents techniques for using symbolic model checking to automatically
verify a class of real-world applications that have many time-invariant constraints.
An example of constraint-rich systems is the symbolic models developed by NASA
for on-line fault diagnosis [16]. These models describe the operation of compo-
nents in complex electro-mechanical systems, such as autonomous spacecraft or
robot explorers. The models consist of interconnected components (e.g., thrusters,
sensors, motors, computers, and valves) and describe how the mode of each com-
ponent changes over time. Based on these models, the Livingstone diagnostic en-
gine [16] monitors sensor values and detects, diagnoses, and tries to recover from
inconsistencies between the observed sensor values and the predicted modes of the
components. The relationships between the modes and sensor values are encoded
using symbolic constraints. Constraints between state variables are also used to
encode interconnections between components. We have developed an automatic
translator from such fault models to SMV (Symbolic Model Verifier) [11], where
mode transitions are encoded as transition relations and state-variable constraints
are translated into sets of time-invariant constraints.

To verify constraint-rich systems, we introduce two new optimizations. The
first optimization is a simple extension of the conjunctive-partitioning algorithm.
The other is a collection of BDD-based macro-extraction and macro-expansion
algorithms to remove redundant state variables. We show that these two optimiza-
tions are essential in verifying constraint-rich problems. In particular, these opti-
mizations have enabled the verification of fault diagnosis models for the Nomad
robot (an Antarctic meteorite explorer) [1] and the NASA Deep Space One (DS1)
spacecraft [2]. These models can be quite large, with up to 1200 state bits.

The rest of this paper is organized as follows. We first briefly describe symbolic
model checking and how time-invariant constraints arise naturally from modeling
(Section 2). We then present our new optimizations: an extension to conjunctive
partitioning (Section 3), and BDD-based algorithms for eliminating redundant state
variables (Section 4). We then show the results of a performance evaluation on the
effects of each optimization (Section 5). Finally, we present a comparison to prior
work (Section 6) and some concluding remarks (Section 7).

2 Background

Symbolic model checking [5, 7,11] is a fully automatic verification paradigm that
checks temporal properties (e.g., safety, liveness, fairness, etc.) of finite state sys-
tems by symbolic state traversal. The core enabling technology for symbolic model
checking is the use of the Binary Decision Diagram (BDD) representation [4] for

State sets and state transitions. BDDs represent Boolean formulas canonically as
directed acyclic graphs such that equivalent sub-formulas are uniquely represented
as a single subgraph. This uniqueness property makes BDDs compact and enables
dynamic programming to be used for computing Boolean operations symbolically.

To use BDDs in model checking, we need to map sets of states, state transitions,
and state traversal to the Boolean domain. In this section, we briefly describe
this mapping and motivate how time-invariant constraints arise. We finish with
definitions of some additional terminology to be used in the rest of the paper.

2.1 Representing State Sets and Transitions

In the symbolic model checking of finite state systems, a state typically describes
the values of many components (e.g., latches in digital circuits) and each compo-
nent is represented by a state variable. Let V = {vi,..., vn} be the set of state
variables in a system, then a state can be described by assigning values to all the
variables in V. This valuation can in term be written as a Boolean formula that is
true exactly for the valuation as /\"_0 (VJ == c;), where c; is the value assigned to
the variable VJ, and the "==" represents the equality operator in a predicate (similar
to the C programming language). A set of states can be represented as a disjunction
of the Boolean formulas that represent the states. We denote the BDD representa-
tion for a set of states S by S (V).

In addition to the set of states, we also need to map the system's state transitions
to the Boolean domain. We extend the above concept of representing a set of states
to representing a set of ordered-pairs of states. To represent a pair of states, we
need two sets of state variables: V the set of present-state variables for the first
tuple and V the set of next-state variables for the second tuple. Each variable v in
V has a corresponding next-state variable v' in V. A valuation of variables in V
and V can be viewed as a state transition from one state to another. A transition
relation can then be represented as a set of these valuations. We denote the BDD
representation of a transition relation T as T(V, V).

In modeling finite state systems, the overall state transitions are generally spec-
ified by defining the valid transitions for each state variable. To support non-
deterministic transitions of a state variable, the expression that defines the tran-
sitions evaluates to a set, and the next-state value of the state variable is non-
deterministically chosen from the elements in the set. Hereafter, we refer to an
expression that evaluates to a set either as a set expression or as a non-deterministic
expression depending on the context, and we use the bold font type, as in f, to rep-
resent such expression. Let f8 be the set expression representing state transitions
of the state variable VJ. Then the BDD representation for u,'s transition relation T;

can be defined as

For synchronous systems, the BDD for the overall state transition relation T is
n

T(V,V'):= f\Ti{V,V').
«=o

Detailed descriptions on this formulation, including mapping of asynchronous sys-
tems, can be found in [5,11].

Note that in the above formulation, we also need to represent non-Boolean
expressions (such as f,'s) or non-Boolean variables as part of intermediate step.
These non-Boolean formulas can be represented using variants of BDDs (e.g.,
MTBDD [6]) that extend the BDD concept to include non-Boolean values. These
extensions also include algorithms for Boolean operators with non-Boolean argu-
ments like the "==" and "€". We will refer to all these BDD-variants simply as
BDDs.

j'

2.2 Time-Invariant Constraints and Their Common Usages

In symbolic model checking, time-invariant constraints specify the conditions that
must always hold. More formally, let Cu ..., C\ be the time-invariant constraints
and let C := C\ A C2 A ... A C\. Then, in symbolic state traversal, we consider
only states where C is true. We refer to C as the constrained space.

To motivate how time-invariant constraints arise naturally in modeling complex
systems, we describe three common usages. One common usage is to make the
same non-deterministic choice across multiple expressions in transition relations.
For example, in a master-slave model, the master can non-deterministically choose
which set of idle slaves to assign the pending jobs, and the slaves' next-state values
will depend on the choice made. To model this, let f be the non-deterministic
expression representing how the master makes its choice. If the slaves' transition
relations are defined using the expression f directly, then each use of f makes its
own non-deterministic choice independent of other uses. Thus, to ensure that all the
slaves see the same non-deterministic choice, a new state variable u is introduced to
record the choice made, and u is then used to define the slaves' transition relations.
This recording process is expressed as the time-invariant constraint tief.

Another common usage is for establishing the interface between different com-
ponents in a system. For example, suppose two components are connected with a
pipe of a fixed capacity. Then, the input of one component is the minimum of the
pipe's capacity and the output of the other component. This relationship is de-
scribed as a time-invariant constraint between the input and the output of these two
components.

Third common usage is specific uses of generic parts. For example, a bi-
directional fuel pipe may be used to connect two components. If we want to make
sure the fuel flows only one way, we need to constrain the valves in the fuel pipe.
These constraints are specified as time-invariant constraints. In general, specific
uses of generic parts arise naturally in both the software and the hardware domain
as we often use generic building blocks in constructing a complex system.

In the examples above, the use of time-invariant constraints is not always nec-
essary because some these constraints can be directly expressed as a part of the
transition relation and the associated state variables can be removed. However,
these constraints are used to facilitate the description of the system or to reflect the
way complex systems are built. Without these constraints, multiple expressions
will need to be combined into possibly a very complicated expression. Perform-
ing this transformation manually can be labor intensive and error-prone. Thus it
is up to the verification tool to automatically perform these transformations and
remove unnecessary state variables. Our optimizations for constraint-rich models
is to automatically eliminate redundant state variables (Section 4) and partition the
remaining constraints (Section 3).

2.3 Symbolic State Traversal

To reason about temporal properties, the pre-image and the image of the transition
relation are used for symbolic state traversal, and time-invariant constraints are
used to restrict the valid state space. Based on the BDD representations of a state
set S and the transition relation T, we can compute the pre-image and the image
of S, while restricting the computations to the constrained space C, as follows:

pre-image(S)(V) := C(V) A 3V'.[T(V, V) A (S(V) A C(V'))] (1)

image(S)(V) := C(V) A 3V.[T(V,V) A (S(V) A C(V))] (2)

One limitation of the BDD representation is that the monolithic BDD for the
transition relation T is often too large to build. A solution to this problem is the
conjunctive partitioning [5] of the transition relation. In conjunctive partitioning,
the transition relation is represented as a conjunction Pi A P2 A ... A Pk with each
conjunct p represented by a BDD. Then, the pre-image can be computed by con-
juncting with one P, at a time, and by using early quantification to quantify out
variables as soon as possible. The early-quantification optimization is based on the
property that sub-formulas can be moved out of the scope of an existential quan-
tification if they do not depend on any of the variables being quantified. Formally,
let V/, a subset of V, be the set of variables that do not appear in any of the subse-
quent Pj's, where 1 < i < k and i < j < k. Then the pre-image can be computed

as

Pi := 3I/1
/.[P1a/y')A(S0//)AC'0/'))] (3)

V2 := 3Vl[P2(V,V')APl]

Pk := 3VUPk(Vy)APk^]

pre-image(S){V) := C(V)Apk

The determination and ordering of partitions (the P,'s in above) can have sig-
nificant performance impact. Commonly used heuristics [8,12] treat the state vari-
ables' transition relations (T^'s) as the partitions. The ordering step then greedily
schedules the partitions to quantify out more variables as soon as possible, while
introducing fewer new variables. Finally, the ordered partitions are tentatively
merged with their predecessors to reduce the number of intermediate results. Each
merged result is kept only if the resulting graph size is less than a pre-determined
limit.

The conjunctive partitioning for the image computation is performed similarly
with present-state variables in V being the quantifying variables instead of next-
state variables in V. However, since the quantifying variables are different be-
tween the image and the pre-image computation, the resulting conjuncts for image
computation is typically very different from those for pre-image computation.

2.4 Additional Terminology

We define the support variables of a function to be the variables that the function
depends on, and the support of a function to be the set of support variables. We
define the HE operator (if-then-else) as follows: given arbitrary expressions / and
g where / and g may both be set expressions, and Boolean expression p, then

^WB(ÄÄ
where X is the set of variables used in expressions p, f, and g. We define a care-
space optimization as any algorithm care-opt that has following properties: given
an arbitrary expression / where / may be a set expression, and a Boolean formula
c, then

care-opt(f,c):=ITE(cJ,d),

where d is defined by the particular algorithm used. The usual interpretation of this
is that we only care about the values of / when c is true. We will refer to c as the

care space and -ic as the don't-care space. The goal of care-space optimizations
is to heuristically minimize the representation for / by choosing a suitable d in
the don't-care space. Descriptions and a study of some care-space optimizations,
including the commonly used restrict algorithm [7], can be found in [14].

3 Extended Conjunctive Partitioning

The first optimization is the application of the conjunctive-partitioning algorithm
on the time-invariant constraints. This extension is derived based on two obser-
vations. First, as with the transition relations, the BDD representation for time-
invariant constraints can be too large to be represented as a monolithic graph. Thus,
it is crucial to represent the constraints as a set of conjuncts rather than a monolithic
graph.

Second, in constraint-rich models, many quantifying variables (variables be-
ing quantified) do not appear in the transition relation. There are two common
causes for this. First, when time-invariant constraints are used to make the same
non-deterministic choices, new variables are introduced to record these choices
(described as the first example in Section 2.2). In the transition relation, these
new variables are used only in their present-state form. Thus, their corresponding
next-state variables do not appear in the transition relation, and for the pre-image
computation, these next-state variables are parts of the quantifying variables. The
other cause is that many state variables are used only to establish time-invariant
constraints. Thus, both the present- and the next-state version of these variables do
not appear in the transition relations.

Based on this observation, we can improve the early-quantification optimiza-
tion by pulling out the quantifying variables (VQ) that do not appear in any of
the transition relations. Then, these quantifying variables (VQ) can be used for
early quantification in conjunctive partitioning of the constrained space (C) where
the time-invariant constraints hold. Formally, let Qi,Q2, ■■■,Qm be the parti-
tions produced by the conjunctive partitioning of the constrained space C, where
C = Qi A Q2 A ... A Qm. For the pre-image computation, Equation 3 is replaced

by

qi := 3W{.[Q1(V')AS(V')]

q2 := 3W'2.{Q2{V)Aq{\

qm := 3WUQm(V')Aqm-l]

Pl := 3V[.[Px{Vy)Aqm\

where W(, a subset of V£, is the set of variables that do not appear in any of the
subsequent Q/s, where 1 < i < m and i < j < m. Similarly, this extension also
applies to the image computation.

4 Elimination of Redundant State Variables

Our second optimization for constraint-rich models is targeted at reducing the state
space by removing unnecessary state variables. This optimization is a set of BDD-
based algorithms that compute an equivalent expression for each variable used in
the time-invariant constraints (macro extraction) and then globally replace a suit-
able subset of variables with their equivalent expressions (macro expansion) to
reduce the total number of variables.

The use of macros is traditionally supported by language constructs (e.g., DE-
FINE in the SMV language [11]) and by simple syntactic analyses such as detecting
deterministic assignments (e.g., a == / where a is a state variable and / is an ex-
pression) in the specifications. However, in constraint-rich models, the constraints
are often specified in a more complex manner such as conditional dependencies on
other state variables (e.g., p => (a == /) as conditional assignment of expression
/ to variable a when p is true). To identify the set of valid macros in such models,
we need to combine the effects of multiple constraints. One drawback of syntactic
analysis is that, for each type of expression, syntactic analysis will need to add
a template to pattern match these expressions. Another more severe drawback is
that it is difficult for syntactic analysis to estimate the actual cost of instantiating a
macro. Estimating this cost is important because reducing the number of variables
by macro expansion can sometimes result in significant performance degradation
caused by large increases in other BDD sizes. These two drawbacks make the
syntactic approach unsuitable for models with complex time-invariant constraints.

Our approach uses BDD-based algorithms to analyze time-invariant constraints
and to derive the set of possible macros. The core algorithm is a new assignment-
extraction algorithm that extracts assignments from arbitrary Boolean expressions
(Section 4.1). For each variable, by extracting its assignment form, we can de-
termine the variable's corresponding equivalent expression, and when appropri-
ate, globally replace the variable with its equivalent expression (Section 4.2). The
strength of this algorithm is that by using BDDs, the cost of macro expansion can be
better characterized because the actual model checking computation is performed
using BDDs.

Note that there have been a number of research efforts on BDD-based redun-
dant state-variable removal. To better compare our approach to these previous re-
search efforts, we postpone the discussion of this prior work until Section 6, after

describing our algorithms and the performance evaluation.

4.1 BDD-Based Assignment Extraction

The assignment-extraction problem can be stated as follows: given an arbitrary
Boolean formula / and a variable v (where v can be non-Boolean), find g and h
such that

• / = (v e g) A h,

• g does not depend on v, and

• h is a Boolean formula and does not depend on v.

The expression (v G g) represents a non-deterministic assignment to variable v.
In the case that g always evaluates to a singleton set, the assignment (v € g) is
deterministic. A solution to this assignment-extraction problem is as follows:

h = 3v.f

t = (J ITE(fUk,{k},$)
ksKv

g = restrictit, h)

where Kv is the set of all possible values of variable v, and restrict [7] is a care-
space optimization algorithm that tries to reduce the BDD graph size (of t) by
collapsing the don't-care space (-1/1). The BDD algorithm for the \JkeKv °Perator

is similar to the BDD algorithm for the existential quantification with the V oper-
ator replaced by the U operator for variable quantification. A correctness proof of
this algorithm is included in Appendix A.

Currently, we do not have any optimality guarantees for this solution. We do
know that the solution g does not always have the minimum number of support
variables, i.e., g is not necessary a minimum-support solution. However, based on
the behavior of the restrict algorithm, we have formed a conjecture about the rela-
tionship between g and any mimmum-support solution. Informally, this conjecture
states that g can be converted to any minimum-support solution via a sequence of
variable substitutions, and that these substitutions are parts of equality decomposi-
tion of h. More formally,

Conjecture 1 Let gm,n be a solution with the minimum number of support vari-
ables. Then, there exists a sequence of n substitutions (ui <— e8) where Ui's are
variables, e; 's are expressions, and 1 < i < n, such that

• let go = & and & = &_! \Ui^ei forl<i<n, then g„ = gmin, and

• fc=MA?=iK-==e,-)).
If this conjecture is true, then we know that even though each right-hand-side ex-
pression g extracted might have more support variables than necessary, these addi-
tional variables can be eliminated later by other macros (the (ui == e,-) 's above).

The above conjecture is based on the observation that given variable u, expres-
sions / and e, where

• /depends on u,

• e does not depend on u, and

• M'S variable order succeeds any of e's support variables' variable order,

then, restrict(f, (u == e)) = /|u+_e. Another way of looking at this is that using
restrict, a variable (u) might not be removed if its variable order does not come
after the orders of its equivalent expression's (e's) support variables. To prove the
above conjecture, we will need to first prove that equality expressions are the only
reason that the restrict algorithm may not produce minimum support solution.

Note that in the assignment-extraction algorithm, the use of the restrict algo-
rithm is not necessary. In fact, any care-space optimization algorithms can be used
instead of the restrict algorithm. We choose to use the restrict algorithm because
of the above property and because it works well in practice for other symbolic-
model-checking computations.

4.2 Macro Extraction and Expansion

In this section, we describe the elimination of state variables based on macro ex-
traction and macro expansion. The first step is to extract macros with the algorithm
shown in Figure 1. This algorithm extracts macros from the constrained space (C),
which is represented as a set of conjuncts. It first uses the assignment-extraction
algorithm to extract assignment expressions (line 5). It then identifies the determin-
istic assignments as candidate macros (line 6). For each candidate, the algorithm
tests to see if applying the macro may be beneficial (line 7). This test is based
on the heuristic that if the BDD graph size of a macro is not too large and its
instantiation does not cause excessive increase in other BDDs' graph sizes, then
instantiating this macro may be beneficial. If the resulting right-hand-side g is not
a singleton set, it is kept separately (line 9). These g's are combined later (line 10)
to determine if their intersection would result in a macro (lines 11-13). Finally, this
algorithm returns the set of selected macros (line 14).

After the macros are extracted, the next step is to determine the instantiation
order. The main purpose of this algorithm (in Figure 2) is to remove circular depen-
dencies. For example, if one macro defines variable i>i to be (v2 A v3) and a second

extract-macros(C, V)
I* Extract macros for variables in V from

the set C of conjuncts representing the constrained space */
1 M <- 0 /* initialize the set of macros found so far */
2 for each v eV
3 TV ■<- 0 /* initialize the set of non-singletons found so far */
4 for each f € C such that / depends on v
5 (g, h) <- assignment-extraction (/, v) I* f = (v e g) A h */
6 if (g always returns a singleton set) /* macro found */
7 if (is-this-result-good(g))
8 M <-{{v,g)}UM
9 else N <- {g} U N
io g'^ng€jvg
11 if (g' always returns a singleton set) /* macro found */
12 if ((is-this-result-good(g'))
13 M <r-{(v,g')}UM
14 return M

Figure 1: Macro-extraction algorithm. In lines 7 and 12, "is-this-result-good" uses
BDD properties (such as graph sizes) to determine if the result should be kept.

macro defines v2 to be («i V v4), then instantiating the first macro results in a cir-
cular definition in the second macro (v2 = (f 2 A V3) V v4) and thus invalidates this
second macro. Similarly, the reverse is also true. To determine the set of macros
to remove, the algorithm builds a dependence graph (line 1) and breaks circular
dependencies based on graph sizes (lines 2-4). It then determines the ordering of
the remaining macros based on the topological order (line 4) of the dependence
graph.

Finally, in the topological order, each macro (v, g) is instantiated in the remain-
ing macros and in all other expressions (represented by BDDs) in the system, by
substituting the variable v with its equivalent expression g.

5 Evaluation

5.1 Experimental Setup

The benchmark suite used is a collection of 58 SMV models gathered from a wide
variety of sources, including the 16 models used in a BDD performance study [17].
Out of these 58 models, 37 models have no time-invariant constraints, and thus
our optimizations are not triggered and have no influence on the overall verifica-
tion time. Out of the remaining 21 models, 10 very small models (< 10 seconds)

10

order jnacros(M)
/* Determine the instantiation order of the macros in set M */
/* first build the dependence graph G={M,E)*I
E={(x,y)\x = {vX)gx) EM,y= {vy,gy) £ M,gy depends on vx}
I* then remove circular dependences */
while there are cycles in G,

Mc <- set of macros that are in some cycle
remove the macro with largest BDD size in Mc

return a topological ordering of the remaining macros in G

Figure 2: Macro-ordering algorithm.

are eliminated. On the remaining 11 models, our optimizations have made non-
negligible performance impact on 7 models, where the results changed by more
than 10 CPU seconds and 10% from the base case where no optimizations are en-
abled. In Figure 3, we briefly describe these 7 models. Note that some of these
models are quite large, with up to 1200 state bits.

Model
acs
dsl-b
dsl
futurebus
nomad
v-gate
xavier

of State Bits
497
657
657
174

1273
86

100

Description
the altitude-control module of NASA's DS1 spacecraft
a buggy fault diagnosis model for NASA's DS1 spacecraft
corrected version of dsl-b
FutureBus cache coherency protocol
fault diagnosis model for an Antarctic meteorite explorer
reactor-system model
fault diagnosis model for the Xavier robot

Figure 3: Description of models whose performance results are affected by our
optimizations.

The results reported in this section are labeled with the following keys to indi-
cate which optimizations are enabled:

None: no optimizations.

Quan: the "early quantification on the constrained space" optimiza-
tion (Section 3).

SynM: syntactic analysis for macro-extraction and macro-expansion.
This algorithm pattern matches deterministic assignment expres-
sions (v == f, where v is a state variable and / is an expression)
as macros and expands these macros.

11

BDDM: the BDD-based macro extraction and macro expansion (Sec-
tion 4).

Q+SynM: both Quan and SynM optimizations.

Q+BDDM: both Quan and BDDM optimizations.

We performed the evaluation using the Symbolic Model Verifier (SMV) model
checker [11] from Carnegie Mellon University. Conjunctive partitioning was used
only when it was necessary to complete the verification. In these cases (including
acs, nomad, dsl-b, and dsl), the size limit for each partition was set to 10,000
BDD nodes. For the remaining cases, the transition relations were represented as
monolithic BDDs. The constrained space C was represented as a conjunction with
each conjunct's BDD graph size limited to 10,000 nodes. Without partitioning, we
could not construct the BDD representation for the constrained space for 4 models.
The evaluation was performed on a 200MHz Pentium-Pro with 1 GB of memory
running Linux. Each run was limited to 6 hours of CPU time and 900 MB of
memory.

In Figure 4, we show the running time of different optimizations. Note that
for all benchmarks, the time spent by our optimizations is very small (< 5 seconds
or < 5% of total time) and is included in the running time shown. In the rest of
this section, we analyze these results in the following order: the overall impact
of our optimizations (Section 5.2), the impact of early quantification on the con-
straint space (Section 5.3), and the impact of macro optimization (Section 5.4). We
then finish with a brief study on the impact of different size limits for conjunctive
partitioning (Section 5.5).

Model
None
(sec)

Quan
(sec)

SynM
(sec)

BDDM
(sec)

Q+SynM
(sec)

Q+BDDM
(sec)

acs m.o. 32 m.o. 1059 76 7
dsl-b m.o. 321 t.o. m.o. 138 54
dsl m.o. m.o. m.o. to. to. 37
futurebus 1410 53 78 37 35 19
nomad m.o. t.o. m.o. to. 7801 633
v-gates 36 35 51 50 53 50
xavier 16 5 6 5 1 2

Figure 4: Running time with different optimizations enabled. The m.o.'s and t.o.'s
are the results that exceeded the 900-MB memory limit and the 6-hour time limit,
respectively.

12

5.2 Overall Results

The results in Figure 5 show the overall performance impact of our optimizations.
These results demonstrate that our optimizations have significantly improved the
performance for 2 models (with speedups up to 74) and have enabled the verifica-
tion of 4 models. For the v-gates model, the performance degradation (speedup =
0.7) is in the computation of the reachable states from the initial states. Upon fur-
ther investigation, we believe that it is caused by the macro optimization, which in-
creases the graph size of the transition relation from 122-thousand to 476-thousand
nodes. This case demonstrates that reducing the number of state variables does not
always improve performance.

Model None (sec) Q+BDDM (sec) None / Q+BDDM (speedup)
acs m.o. 7 enabled
dsl-buggy m.o. 54 enabled
dsl m.o. 367 enabled
futurebus 1410 19 74.2
nomad m.o. 633 enabled
valves-gates 36 50 0.7
xavier 16 2 8.0

Figure 5: Overall impact of our optimizations. The m.o.'s are the results that ex-
ceeded the 900-MB memory limit.

5.3 Impact of Early Quantification

The results in Figure 6 show the impact of applying early quantification on time-
invariant constraints. The impact is measured both in the number of quantify-
ing BDD variables extracted from the transition relations and in the performance
speedups. The speedup results for None / Quan show that adding this optimization
has enabled the verification of acs and dsl-b, and achieved significant performance
improvement on futurebus (speedup of 26). The results in the Quan columns show
that this improvement is mostly due to the fact that a large number of variables can
be pulled out of the transition relations and applied to conjunctive partitioning and
early quantification of the time-invariant constraints.

From the Q+BDDM and BDDM / Q+BDDM columns, we observe similar
results in presence of BDD-based macro optimization. Note that for the Q+BDDM
columns, the "# of BDD vars extracted" results also include the number of BDD
variables that are removed by the macro optimization. This is done to make the
comparison between Quan and Q+BDDM results easier.

13

The results in Figure 6 show two additional interesting points. First, the num-
ber of variables extracted forpre-image computation is more than that extracted for
image computation. This is because some variables are only used in their present-
state form in the transition relation (see first example in Section 2.2). Second,
comparing the results between Quan and Q+BDDM columns indicates that the
macro optimization generally does not interfere with the early-quantification opti-
mization. The one exception is the nomad model, where the macro optimization
introduced 114 BDD variables ((1121 - 1067) present-state variables plus (1174 -
1114) next-state variables) to the overall transition relation.

Model

Total
#of

BDD
Vars

Effects of CP Optimization
of BDD vars extracted performance speedup
Quan

img p-img
Q+BDDM

img p-img
None/
Quan

BDDM/
Q+BDDM

acs 994 439 449 437 449 enabled 151.0
dsl-b 1314 550 566 546 566 enabled enabled
dsl 1314 550 566 546 566 n/a enabled
futurebus 348 58 110 54 110 26.6 1.9
nomad 2546 1121 1174 1067 1114 n/a enabled
v-gates 172 0 17 8 17 1.0 1.0
xavier 200 69 86 69 86 3.2 2.5

Figure 6: Effectiveness of the extended conjunctive-partitioning optimization. The
effectiveness measures are (1) the number of quantifying BDD variables that are
pulled out of the transition relation for early quantification of the time-invariant
constraints, and (2) the impact on overall running time as performance speedups.
For both measures, we present results both with (+BDDM) and without the BDD-
based macro optimization. The n/a indicates that the speedup can not be computed
because both cases failed to finish within the resource limits. Note: the number
of BDD variables is twice the number of state variables—one copy for the present
state and one copy for the next state.

5.4 Impact of Macro Extraction and Macro Expansion

The results in Figure 7 show the impact of the BDD-based macro optimization,
This impact is measured both in the number of BDD variables removed and in
the performance speedups. The performance results in the None / BDDM column
show that adding this optimization has enabled the verification of acs and achieved
significant performance improvement on futurebus (speedup of 38). The results are
similar in presence of the early-quantification optimization (the Quan / Q+BDDM

14

column). The results for "# of BDD vars removed" show that these performance
improvements are due to the effectiveness of BDD-based macro optimization in re-
moving variables; in particular, over a third of variables are removed for 4 models.

Model

Total
of BDD
Variables

Effects of BDD-based Macro Optimization
Of BDD
variables
removed

performance speedup
None/
BDDM

Quan/
Q+BDDM

acs 994 352 enabled 4.5
dsl-b 1314 492 n/a 5.9
dsl 1314 496 n/a enabled
futurebus 348 18 38.1 2.7
nomad 2546 844 n/a enabled
v-gates 172 16 0.7 0.7
xavier 200 116 3.2 2.5

Figure 7: Effectiveness of macro optimizations. The effectiveness measures are
(1) the number of BDD variables removed by macro optimization, and (2) the
impact on overall running time as performance speedups. For both measures, we
present results both with and without the early-quantification optimization. The
n/a indicates that the speedup can not be computed because both cases failed to
finish within the resource limits. Note: the number of BDD variables is twice the
number of state variables.

To evaluate the effectiveness of syntactic-based vs. BDD-based macro extrac-
tion, we compare the impact of these two approaches using both the number of
BDD variables removed and the running time (Figure 8). The comparison is done
for both with and without the early-quantification optimization. Note that the early-
quantification optimization does not affect the number of BDD variables removed.
Thus, the "# of BDD vars removed" results are the same for both with and without
the early-quantification optimization.

Without the early-quantification optimization (the SynM / BDDM column),
the results show that the BDD-based approach is better with the verification of acs
enabled. With the early-quantification optimization (the Q+SynM / Q+BDDM
column), the results show that the BDD-based approach has enabled the verifica-
tion of dsl and generally has better performance, with speedups of over 10 in acs
and nomad. In the xavier case, the slowdown is 2 (speedup of 0.5) because the
Q+BDDM used one extra second in macro extraction. The overall performance
improvements are due to that the BDD-based approach is more effective in reduc-
ing the number of variables ("# of BDD vars removed" columns). In particular,
for the acs, nomad, dsl-b, and dsl models, > 150 additional BDD variables (i.e.,

15

> 75 state bits) are removed in comparison to using syntactic analysis.

Model

Total
#of

BDD
Vars

Syntax vs. BDD-based Macro Optimization
of BDD vars removed performance speedup
SynMor
Q+SynM

BDDM or
Q+BDDM

SynM/
BDDM

Q+SynM/
Q+BDDM

acs 994 82 352 enabled 10.8
dsl-b 1314 148 492 n/a 2.5
dsl 1314 220 496 n/a enabled
futurebus 348 12 18 2.1 1.8
nomad 2546 688 844 n/a 12.3
v-gates 172 16 16 1.0 1.0
xavier 200 64 116 1.2 1/2 = 0.5

Figure 8: Syntactic-based vs. BDD-based macro optimization. The effectiveness
measures are (1) the number of BDD variables removed, and (2) the impact on
overall running time as performance speedups. For both measures, we present re-
sults both with and without the early-quantification optimization. The n/a indicates
that the speedup can not be computed because both cases failed to finish within the
resource limits. Note: the number of BDD variables is twice the number of state
variables.

5.5 Impact of Conjunctive-Partitioning Size Limit

Because the conjunctive-partitioning algorithm often produces significantly dif-
ferent performance results with different partition-size limits, we have also re-
evaluated the above results using a partition-size limit of 100,000 nodes. The new
results generally follow the same trend as before with the exception of dsl-b and
dsl. For these two models, the results (Figure 9) show that if we choose the right
partition-size limit for each case, we do not need to perform the macro optimiza-
tion to verify them. (Note that this is not always true; e.g., the nomad model cannot
be verified without the macro optimization.) However, with the BDD-based macro
optimization (the Q+BDDM column), the performance results are more stable and
are generally much better.

6 Related Work

There have been many research efforts on BDD-based redundant state-variable
removal in both logic synthesis and verification. These research efforts all use

16

Model

Partition
Size Limit

(# of nodes)
None
(sec)

Quan
(sec)

SynM
(sec)

BDDM
(sec)

Q+SynM
(sec)

Q+BDDM
(sec)

dsl-b
dsl-b

10,000
100,000

m.o.
to.

321
309

to.
to.

m.o.
m.o.

138
to.

54
101

dsl
dsl

10,000
100,000

m.o.
m.o.

m.o.
255

m.o.
to.

to.
m.o.

to.
92

37
74

Figure 9: Effects of the partition-size limit. The m.o. 's and to. 's are the results that
exceeded the 900-MB memory limit and the 6-hour time limit, respectively.

the reachable state space (set of states reachable from initial states) to determine
functional dependencies for Boolean variables (macro extraction). The reachable
state space effectively plays the same role as a time-invariant constraint, because
the verification process only needs to check specifications in the reachable state
space.

Berthet et al. propose the first redundant state-variable removal algorithm in
[3]. In [10], Lin and Newton describe a branch-and-bound algorithm to identify
the maximum set of redundant state variables. In [13], Sentovich et al. propose
new algorithms for latch removal and latch replacement in logic synthesis. There
is also some work on detecting and removing redundant state variables while the
reachable state space is being computed [9, 15].

From the algorithmic point of view, our approach is different from prior work
in two ways. First, in determining the relationship between variables, the algo-
rithms used to extract functional dependencies in previous work can be viewed
as direct extraction of deterministic assignments to Boolean variables. In compari-
son, our assignment extraction algorithm is more general because it can also handle
non-Boolean variables and extract non-deterministic assignments. Second, in per-
forming the redundant state-variable removal, the approach used in the previous
work would need to combine all the constraints first and then extract the macros
directly from the combined result. However, for coristraint-rich models, it may not
be possible to combine all the constraints because the resulting BDD is too large
to build. Our approach addresses this issue by first applying the assignment ex-
traction algorithm to each constraint separately and then combining the results to
determine if a macro can be extracted (see Figure 1).

Another difference is that in previous work, the goal is to remove as many
variables as possible. However, we have empirically observed that in some cases,
removing additional variables can result in significant performance degradation in
overall verification time (slowdown over 4). To address this issue, we use simple

17

heuristics (size of the macro and the growth in graph sizes) to choose the set of
macros to expand. This simple heuristic works well in the test cases we tried.
However, in order to fully evaluate the impact of different heuristics, we need to
gather a larger set of constraint-rich models from a wider range of applications.

t

7 Conclusions and Future Work

The two optimizations we proposed are crucial in verifying this new class of constraint-
rich applications. In particular, they have enabled the verification of real-world
applications such as the Nomad robot and the NASA Deep Space One spacecraft.

We have shown that the BDD-based assignment-extraction algorithm is effec-
tive in identifying macros. We plan to use this algorithm to perform a more precise
cone-of-influence analysis with the assignment expressions providing the exact de-
pendence information between the variables. In general, we plan to study how
BDDs can be use to further help other compile-time optimizations in symbolic
model checking.

Acknowledgement

We thank Ken McMillan for discussions on the effects of macro expansion. We
thank Olivier Coudert, Fabio Somenzi and reviewers for comments on this work.
We are grateful to Intel Corporation for donating the machines used in this work.

A Correctness Proof for Assignment-Extraction Algorithm

In this section, we present a correctness proof for the assignment-extraction algo-
rithm in Section 4.1. Before presenting the main result, we first state and prove two
supporting lemmas.

Lemma 1 Let care-opt be any care-space optimization. Then, for arbitrary set
expression t, Boolean formula h, and variable v,

(v e care-opt(t, h)) A h = care-opt(v £ t, h) A h.

Proof
By the definition of the care-space optimization, we have the following prop-
erties:

h =$■ (care-opt(t, h) == t),

h =>• [care-opt(v G t, h) == (v £ t)].

18

Therefore,

(v e care-opt(t, h)) A h = (v £ t) A h

= care-opt(v e t, h) A h.

Lemma 2 Given an arbitrary Boolean formula f and a variable v. Let

t= U ITE(fUk,{k}J),
keKv

where Kv is the set of all possible values of variable v. Then,

(v 6 t) = /.

Proof

v€t = Y iV == k') A (k' E t)
k'ei<v

= V (t, == k') A [Ar' e U ITE(fUk, {k}, 0)]
k'eKv keKv

= \f (v==k')A \f [k'eITE(fUk,{k},®)]
k'<=Kv k£Kv

= \l („ == k') A V iTE(f\v^.k, k> e {k}, k' e 0)
k'eKv keh'v

= \/ (v == k') A V ITE(f\v^k, k' e {k}, 0)
i'eü'« keh~v

= \/ (v == *') A ITE(f\v^k/, k' e {*'}, 0)

= \/ (u==Ä;')A/r£(/l^,)1)0)

fc'eA'„

= V (U==A')A/U^
A;'eA'„

= /•

D

D

Using the two lemmas above, we can now prove the correctness of the assignment-
extraction algorithm.

19

Theorem 1 Given an arbitrary Boolean formula f and a variable v. Let

h = 3v.f,

t = U LTE(f\vi-k,{k},<b),
k£Kv

g = care-opt(t, h),

where care-opt is any care-space optimization algorithm and care-opt(t, h) does
not depend on any new variables (other than those already in t and h). Then, the
following conditions are true.

1. f=(veg)Ah,

2. g does not depend on v, and

3. h is a Boolean formula and does not depend on v.

Proof
To prove Condition 1, we apply both Lemma 1 and Lemma 2 in the following
derivation:

{v £ g) A h = (»6 care-opt(t, h)) A h

= care-opt{y G t, h) A h

= care-opt(f, h) A h

= /Aft

= /A 3«./

= /

Condition 2 is true because t does not depend on v (by construction) and the
care-opt algorithm does not introduce new variable dependencies (given).
Condition 3 is true because / is a Boolean formula and h = 3v.f is a
Boolean formula that does not depend on v.

D

References

[1] BAPNA, D., ROLLINS, E., MURPHY, J., AND MAIMONE, M. The Atacama
Desert trek - outcomes. In Proceedings of the 1998 International Conference
on Robotics and Automation (May 1998), pp. 597-604.

20

[2] BERNARD, D. E., DORAIS, G. A., FRY, C, JR., E. B. G., KANEFSKY, B.,
KURIEN, J., MILLAR, W., MUSCETTOLA, N., NAYAK, P. P., PELL, B.,
RAJAN, K., ROUQUETT, N., SMITH, B., AND WILLIAMS, B. Design of
the remote agent experiment for spacecraft autonomy. In Proceedings of the
1998 IEEE Aerospace Conference (March 1998), pp. 259-281.

[3] BERTHET, C., COUDERT, O., AND MADRE, J. C. New ideas on symbolic

manipulations of finite state machines. In 1990 IEEE Proceedings of the
International Conference on Computer Design (September 1990), pp. 224-
227.

[4] BRYANT, R. E. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers C-35, 8 (August 1986), 677-691.

[5] BURCH, J. R., CLARKE, E. M., LONG, D. E., MCMILLAN, K. L., AND

DILL, D. L. Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 13,4 (April 1994), 401-424.

[6] CLARKE, E. M., MCMILLAN, K. L., ZHAO, X., FUJITA, M., AND YANG,

J. C.-Y. Spectral transform for large Boolean functions with application to
technology mapping. In Proceedings of the 30th ACM/IEEE Design Automa-
tion Conference (June 1993), pp. 54-60.

[7] COUDERT, O., AND MADRE, J. C. A unified framework for the formal
verification of circuits. In Proceedings of the International Conference on
Computer-Aided Design (Feb 1990), pp. 126-129.

[8] GEIST, D., AND BEER, I. Efficient model checking by automated order-
ing of transition relation partitions. In Proceedings of the Computer Aided
Verification (June 1994), pp. 299-310.

[9] Hu, A. J., AND DILL, D. L. Reducing BDD size by exploiting functional
dependencies. In Proceedings of the 30th ACM/IEEE Design Automation
Conference (June 1993), pp. 266-71.

[10] LIN, B., AND NEWTON, A. R. Exact redundant state registers removal based
on binary decision diagrams. IFIP Transactions A, Computer Science and
Technology A, 1 (August 1991), 277-86.

[11] MCMILLAN, K. L. Symbolic Model Checking. Kluwer Academic Publish-
ers, 1993.

21

[12] RANJAN, R. K., AZIZ, A., BRAYTON, R. K., PLESSIER, B., AND PIXLEY,

C. Efficient BDD algorithms for FSM synthesis and verification. Presented
in the IEEE/ACM International Workshop on Logic Synthesis, May 1995.

[13] SENTOVICH, E. M., AND HORIA TOMA, G. B. Latch optimization in cir-
cuits generated from high-level descriptions. In Proceedings of the Interna-
tional Conference on Computer-Aided Design (November 1996), pp. 428-35.

[14] SHIPLE, T. R., HOJATI, R., SANGIOVANNI-VINCENTELLI, A. L., AND

BRAYTON, R. K. Heuristic minimization ofBDDs using don't cares. In Pro-
ceedings of the 31st ACM/IEEE Design Automation Conference (June 1994),
pp. 225-231.

[15] VAN ElJK, C. A. J., AND JESS, J. A. G. Exploiting functional dependencies
in finite state machine verification. In Proceedings of European Design and
Test Conference (March 1996), pp. 266-71.

[16] WILLIAMS, B.C., AND NAYAK, P. P. A model-based approach to reactive
self-configuring systems. In Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence and the Eighth Innovative Applications of
Artificial Intelligence Conference (August 1996), pp. 971-978.

[17] YANG, B., BRYANT, R. E., O'HALLARON, D. R., BIERE, A., COUDERT,

O., JANSSEN, G., RANJAN, R. K., AND SOMENZI, F. A performance study
of BDD-based model checking. In Proceedings of the Formal Methods on
Computer-Aided Design (November 1998), pp. 255-289.

22

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

